
M-P Neuron: A binary discrete-time element 

Input: 𝑎𝑖
𝑡  (0 or 1 only) 

Weight: 𝑤𝑖 (+1 for excitatory, -1 for inhibitory) 

Excitation threshold: θ 

Instant State: 𝑆𝑡 = ∑ 𝑤𝑖
𝑡𝑎𝑖

𝑡
𝑖 = 𝑓(𝑡) (fixed, doesn’t depend on the previous 

state) 

Output: 𝑥𝑡+1 = 1 iff 𝑆𝑡 ≥  θ , or 𝑥(𝑡) = 𝑔(𝑆𝑡) = 𝑔(𝑓(𝑡)) 

Threshold activation function: 

𝑔(𝑆𝑡) = 𝐻(𝑆𝑡 − θ) = {
1, 𝑆𝑡 ≥ 𝜃
0, 𝑆𝑡 < 𝜃

 

Heaviside (unit step) function: 𝐻(𝑋) = {
1, 𝑥 ≥ 0
0, 𝑥 < 0

 

ANN learning rule:  

Adjust the weights of connections to get desirable output 

Hebb’s Rule 
Increase weight of connection at every next instant: 

𝑤𝑗𝑖
𝑘+1 = 𝑤𝑗𝑖

𝑘 + Δ𝑤𝑗𝑖
𝑘 , where Δ𝑤𝑗𝑖

𝑘 = 𝐶𝑎𝑖
𝑘𝑥𝑗

𝑘 (𝐶 is learning rate) 

1. Calculate 𝑆0 = ∑ 𝑎1
0𝑤1

0
𝑖  

2. Calculate Δ𝑤𝑖
0 and 𝑤𝑖

1 

3. Calculate Δ𝑤𝑖
1 and 𝑤𝑖

2······ 

Supervised Learning: Classification with label 

Assumption: The distribution of the training examples is identical to the 

distribution of test examples. 

Perceptron: Error-correcting rule 

Simplest architecture:  

One layer of input units 

One layer of output units 

Input: 𝑆𝑗 = ∑ 𝑤𝑗𝑖
𝑛
𝑖=0 𝑎𝑖  

with a bias input unit 𝑎0 

Threshold activation function: 

 𝑋𝑗 = 𝑓(𝑆𝑗) = {
1, 𝑆𝑗 ≥ 𝜃𝑗

0, 𝑆𝑗 < 𝜃𝑗
 

Output vector: 𝑋 = 𝑋0, 𝑋1, ⋯ , 𝑋𝑛 

Error: 𝑒𝑗 = (𝑡𝑗 − 𝑋𝑗), used to re-adjust the weights 

Δw = learning rate * (teacher - output) * input 

1. Calculate 𝑒𝑗 = (𝑡𝑗 − 𝑋𝑗) 

2. Calculate Δ𝑤𝑗𝑖 = 𝐶𝑒𝑗𝑎𝑖 = 𝐶(𝑡𝑗 − 𝑋𝑗)𝑎𝑖 

3. Update weights 𝑤𝑗𝑖 = 𝑤𝑗𝑖 + Δ𝑤𝑗𝑖 

Keep training until the algorithm converges: 

• The training data is linearly separable 

• The learning rate is sufficiently small 

Perceptron Convergence Theorem 

For any data set that’s linearly separable, the learning rule is guaranteed to 

find a solution in a finite number of steps. 

Assumptions: 

• At least one such set of weights, w*, exists 

• There are a finite number of training patterns 

• The threshold function is uni-polar (0 or 1) 

Perceptron Performance: RMS 

RMS (root-mean-square) error: √(
∑ (𝑥𝑖−𝑥𝑖̂)2𝑁

𝑖=1

𝑁
) 

where 𝑥𝑖 is the target output, 𝑥𝑖̂ is the instant output. 

The RMS error is a function of the instant output only. 

Minimize the RMS error to get the best performance. 
Perceptron Classifier 

 
Hyperplane decision surface: 𝑤 ⋅ 𝑥𝑇 = 0 
If two classes of patterns can be separated by a decision boundary  

𝑏 + ∑ 𝑥𝑖𝑤𝑖
𝑛
𝑖=1 = 0, then they are linearly separable.  

Without bias, the hyperplane will be forced to intersect origin.  

Linearly inseparable: XOR; Linearly separable: AND, OR 

Gradient Descent Rule 

Perceptron classifier fails if the data is not linearly separable. 

Minimize the error 𝐸(𝑤) =
1

2
∑ (𝑦𝑒 − 𝑜𝑒)2

𝑒  in the steepest direction  

(most rapid decrease) -- in the direction opposite to the gradient: 

Δ𝐸(𝑤) = [∂𝐸/ ∂𝑤0, ∂𝐸/ ∂𝑤1, ⋯ , ∂𝐸/ ∂𝑤𝑛] , 𝑤𝑖 = 𝑤𝑖 + η ∂𝐸/ ∂𝑤𝑖 

Weight update can be derived: 

∂𝐸/ ∂𝑤 = ∂ (
1

2
∑(𝑦𝑒 − 𝑜𝑒)2)/

𝑒

∂𝑤𝑖 = ∑(𝑦𝑒 − 𝑜𝑒)(−𝑥𝑖𝑒)

𝑒

) 

➔  𝑤𝑖 = 𝑤𝑖 + η ∑ (𝑦𝑒 − 𝑜𝑒)𝑥𝑖𝑒𝑒 , Δ𝑤 = −η
∂𝐸𝑒

∂𝑤
 

Repeat until termination condition is satisfied: 

1. Calculate the output: 𝑜𝑒 = ∑ 𝑤𝑖𝑥𝑖𝑒
𝑑
𝑖=0  

2. Calculate the update: Δ𝑤𝑖 = Δ𝑤𝑖 + η(𝑦𝑒 − 𝑜𝑒)𝑥𝑖𝑒 

3. Update the accumulated weights: 𝑤𝑖 = 𝑤𝑖 + Δ𝑤𝑖 

Cons: converges very slowly; multiple local minima in the error surface, 

then there is no guarantee that it will find the global min. 

Incremental Gradient Descent 

Difference: The gradient descent rule updates the weights after calculating 
the whole error accumulated from all examples, the incremental version 

approximates the gradient descent error decrease by updating the weights 

after each training example. 

For each training example:  

1. Calculate the network output: 𝑜𝑒 = ∑ 𝑤𝑖𝑥𝑖𝑒
𝑑
𝑖=0   

2. Update the weights:  𝑤𝑖 = 𝑤𝑖 + η(𝑦𝑒 − 𝑜𝑒)𝑥𝑖𝑒 

Sigmoidal Perceptron 

σ = σ(𝑆) =
1

1+𝑒−𝑆
 , where 𝑆 = ∑ 𝑤𝑖 𝑥𝑖

𝑑
𝑖=1  

For each training example:  

1. Calculate the output: 𝑜𝑒 = σ(∑ 𝑤𝑖 𝑥𝑖𝑒)𝑑
𝑖=0  

2. Calculate the update: 

Δ𝑤𝑖 = Δ𝑤𝑖 + 𝜂(𝑦𝑒 − 𝑜𝑒)𝜎(𝑠)(1 − 𝜎(𝑠))𝑥𝑖𝑒 

3. Update the accumulated weights: 𝑤𝑖 = 𝑤𝑖 + Δ𝑤𝑖 

Incremental Gradient Descent Version: Same as above 

Perceptron Rule vs. Gradient Descent Rule 

Perceptron training: 

• uses thresholded unit 

• converges after a finite number of iterations 

• output hypothesis classifies training data perfectly 

• linearly separability necessary 

Gradient descent: 

• uses unthresholded linear unit 

• converges asymptotically toward a min error hypothesis 

• termination is not guaranteed 

• linear separability not necessary 

Multi-layer Perceptron (MLP) 

Requires differentiable, continuous nonlinear activation functions. 

Sigmoid: σ(𝑆) =
1

1+𝑒−𝑆
 , Hyperbolic tangent: 𝑡𝑎𝑛ℎ(𝑠) =

𝑒𝑆−𝑒−𝑆

𝑒𝑆+𝑒−𝑆
 

A two-layer neural network implements the function: 

𝑓(𝑥) = 𝜎 (∑ 𝑤𝑗𝑘

𝐽

𝑗=1

𝜎 (∑ 𝑤𝑖𝑗

𝐼

𝑖=1

𝑥𝑖 + 𝑤𝑜𝑗 ) + 𝑤𝑜𝑘 ) 

MLP Solving XOR Problem 

2 input neurons, 2 hidden neurons, 1 output neurons, weights for input-hidden 

{1}, for hidden-output {1, -2}, bias in hidden {0, -1}, in output 0. ReLU. 

Backpropagation Learning Algorithm 

Initialize weights set to small random values, set a learning rate; 

Repeat for each training example (x, y):  
Forward: 

1. 𝑜𝑗 = 𝜎(𝑆𝑗) =
1

1+𝑒
−𝑆𝑗

, 𝑆𝑗 = ∑ 𝑤𝑖𝑗
𝑑
𝑖=0 𝑜𝑖 , where 𝑜𝑖 = 𝑥𝑖 (hidden) 

2. 𝑜𝑘 = 𝜎(𝑆𝑘) =
1

1+𝑒−𝑆𝑘
, 𝑆𝑘 = ∑ 𝑤𝑗𝑘

𝑑
𝑖=0 𝑜𝑗 (output) 

Backward: 

1. Calculate the benefit β𝑘  at the node k in the output layer: 

𝛽𝑘 = 𝑜𝑘(1 − 𝑜𝑘)[𝑦𝑘 − 𝑜𝑘] (Effects from the output nodes) 

2. Calculate the changes for weights j -> k on connections  

to nodes in the output layer: Δ𝑤𝑗𝑘 = 𝜂𝛽𝑘𝑜𝑗, Δ𝑤0𝑘 = 𝜂𝛽𝑘  

(Effects from the output of the neuron) 

3. Calculate the benefit β𝑗  for the hidden node:  

𝛽𝑗 = 𝑜𝑗(1 − 𝑜𝑗)[∑ 𝛽𝑘𝑤𝑗𝑘𝑘 ]  

(Effects from multiple nodes in the next layer) 

4. Calculate the changes for weights i -> j on connections to nodes 

in the hidden layer: Δ𝑤𝑖𝑗 = 𝜂𝛽𝑗 𝑜𝑖, Δ𝑤0𝑗 = 𝜂𝛽𝑗  

5. Update the weights by the changes: 𝑤 =  𝑤 +  Δ𝑤 

Online (Incremental) Training: Revision by example 

Derivation of Backpropagation Algorithm 

The BP training algo for MLP is a generalized gradient descent rule 

For weights 𝑗 → 𝑘 on connections to nodes in the output layer: 
∂𝐸𝑒

∂𝑤𝑗𝑘
=

∂𝐸𝑒

∂𝑠𝑘
⋅ 𝑜𝑗, 

∂𝐸𝑒

∂𝑠𝑘
=

𝜕𝐸𝑒

𝜕𝑜𝑘
⋅

𝜕𝑜𝑘

𝜕𝑠𝑘
,  

∂𝑜𝑘

∂𝑠𝑘
=

∂σ(𝑠𝑘)

∂𝑠𝑘
= 𝑜𝑘(1 − 𝑜𝑘) 

∂𝐸𝑒

∂𝑜𝑘
=

∂ (
1
2

∑ (𝑦𝑙 − 𝑜𝑙)
2

𝑘 )

∂𝑜𝑘
=

∂ (
1
2

(𝑦𝑘 − 𝑜𝑘)2)

∂𝑜𝑘
=

1

2
⋅ 2 ⋅ (𝑦𝑘 − 𝑜𝑘)

∂(𝑦𝑘 − 𝑜𝑘)

∂𝑜𝑘
= −(𝑦𝑘 − 𝑜𝑘) 

Therefore, 
∂𝐸𝑒

∂𝑠𝑘
= −(𝑦𝑘 − 𝑜𝑘)𝑜𝑘(1 − 𝑜𝑘), and  

∂𝐸𝑒

∂𝑤𝑗𝑘
=

∂𝐸𝑒

∂𝑠𝑘
⋅ 𝑜𝑗 

Substitute Δ𝑤𝑗𝑘 = −
∂𝐸𝑒

∂𝑤𝑗𝑘
= ηβ𝑘𝑜𝑗,  β𝑘 = (𝑦𝑘 − 𝑜𝑘)𝑜𝑘(1 − 𝑜𝑘) 

Then we have  Δ𝑤𝑖 = Δ𝑤𝑖 + 𝜂(𝑦𝑒 − 𝑜𝑒)𝜎(𝑠)(1 − 𝜎(𝑠))𝑥𝑖𝑒 

For weights 𝑖 → 𝑗 on connections to nodes in the hidden layer: 
∂𝐸𝑒

∂𝑠𝑗
= ∑ ∂𝐸𝑒

∂𝑠𝑘
𝑘 ⋅

∂𝑠𝑘

∂𝑠𝑗
= ∑ −β𝑘𝑘 ⋅

∂𝑠𝑘

∂𝑠𝑗
= ∑ −𝑘 β𝑘 ⋅

∂𝑠𝑘

∂𝑜𝑗
⋅

∂𝑜𝑗

∂𝑠𝑗
= ∑ (−β𝑘)𝑘 ⋅ 𝑤𝑗𝑘 ⋅

∂𝑜𝑗

∂𝑠𝑗
= ∑ (−β𝑘)𝑘 ⋅ 𝑤𝑗𝑘 ⋅ 𝑜𝑗(1 − 𝑜𝑗)  

For the hidden units:  

Δ𝑤𝑖𝑗 = ηβ𝑗 𝑜𝑖, Δ𝑤0𝑗 = ηβ𝑗 , β𝑗 = −
∂𝐸𝑒

∂𝑠𝑗
= 𝑜𝑗(1 − 𝑜𝑗)[∑ β𝑘𝑤𝑗𝑘𝑘 ] 

 It can be generalized so that 
∂𝐸𝑡𝑜𝑡𝑎𝑙

∂𝑤𝑖𝑗
= ∑ ∂𝐸𝑒

∂𝑤𝑖𝑗
𝑒  

Momentum: stabilize the weight change 

Δ𝑤(𝑡) = −η
∂𝐸𝑒

∂𝑤(𝑡)
+ αΔ𝑤(𝑡 − 1), t is the index of current change 

It smooths the weight changes and suppresses cross- stitching,  

that is cancels side-to-side oscillations across the error valley 

Overcome overfitting 

Early stopping, network pruning, regularization techniques, … 

Weight decay: penalizes large weights to reduce variance 

Cross validation (k-fold, leave-one-out) 
Convolutional Neural Network 

N*N layer and m*m filter → (N-m+1) * (N-m+1) layer output 

Rectified Linear Unites (ReLU): 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) 

Benefits of ReLU: much simpler computationally 

– The forward/backward passes through it are just a simple if statement 
– The sigmoid activation requires computing an exponent 

– This advantage is huge when dealing with big networks with many neurons, 

and can significantly reduce both training and evaluation times 

– Sigmoid activations are easier to saturate (hampers learning in deep 

networks), while ReLUs only saturates when the input is less than 0.  

Past Exam: What is the disadvantage of a fully-connected neural network 

compared to a CNN with the same size layers? 

- In fully-connected NN, there’re too many weights to learn. 

Transfer Learning  

The ability of a system to recognize and apply knowledge and skills learned 
in previous tasks to novel tasks (in new domains) 

Radial-basis Function (RBF) Networks 

𝐹(𝑥) = ∑ 𝑤𝑖 ϕ(||𝑥 − 𝑥𝑖||)
𝑁
𝑖=1  , where ϕ(||𝑥 − 𝑥𝑖||)  is a set of non-linear 

radial-basis functions, 𝑥𝑖 are the centers of these functions, and || ⋅ || is the 

Euclidean norm. Are used to solve curve-fitting or interpolation problem. 

RBF is a real-valued function whose depends only on the distance from the 

origin ϕ(𝑥) = ϕ(||𝑥||), or the center c: ϕ(𝑥, 𝑐) = ϕ(||𝑥 − 𝑐||) 

Gaussian RBF: 𝐹(𝑥) = ∑ 𝑤𝑖𝑒𝑥𝑝𝑛
𝑖=1 (−

||𝑥−𝑡𝑖||
2

2σ𝑖
2 ) 

Matrix Form: ϕ =  [
ϕ1(||𝑥1 − 𝑡1||) ⋯ ϕ𝑛(||𝑥𝑡 − 𝑡𝑛||)

⋮ ⋱ ⋮
ϕ1(||𝑥𝑁 − 𝑡1||) ⋯ ϕ𝑛(||𝑥𝑁 − 𝑡𝑛||)

] 

ϕ [

𝑤1

. . .
𝑤𝑛

] = [
𝑑1

. . .
𝑑𝑁

] = 𝑑, where 𝑜(𝑥𝑖) = 𝑑𝑖  

RBF Training: during the training, the centers and weights are changed 

1. Determine the network structure with n basis functions ϕ𝑖, with 

centers 𝑡𝑖 using k-means clustering algorithm 

2. Determine the basis function variances σ𝑖
2 

3. Compute each output with Gaussian ϕ𝑒𝑖 = 𝑒𝑥𝑝 (
−||𝑥𝑒−𝑡𝑖||

2

2σ𝑖
2 ) 

4. Compute the correlation matrix: ϕ𝑇ϕ and pseudo inverse 
(ϕ𝑇ϕ)−1, the vector ϕ𝑇𝑑, the weights 𝑊 =  (ϕ𝑇ϕ)−1𝜙𝑇𝑑 

Clustering 

Good clustering: high intra-class similarity and low inter-class similarity 

Minkowski distance: 𝑑(𝑖, 𝑗) = √|𝑥𝑖1 − 𝑥𝑗1|
𝑞

+
𝑞

|𝑥𝑖2 − 𝑥𝑗2|
𝑞

+ ⋯ + |𝑥𝑖𝑝 − 𝑥𝑗𝑝|
𝑞
 

If q = 1, d is Manhattan distance, if q = 2, d is Euclidean distance 

RBF Networks solving XOR 

ϕ𝑖 = 𝑒𝑥𝑝 (−||𝑥 − 𝑥𝑖||
2

), choose  𝑥1 = (1,1), 𝑥2 = (0,0), 2σ𝑖
2 = 1 

 
RBF Networks vs MLP 
Similarities:   

• Both are layered feedforward networks that produce nonlinear function 

mappings; Both proven to be universal approximators 

Differences: 

• RBF has only one hidden layer, while MLP has one or more hidden 

layers depending on the application task; 

• The nodes in the hidden and output layers of MLP use the same 

activation function, while RBF uses different activation functions 

(Gaussians with different centers and variances); 

• The hidden and output layers of MLP are nonlinear, while only the 

hidden layer of RBF is nonlinear (output linear) 

• The activation functions in the RBF nodes compute the Euclidean 

distance between the input examples and the centers, while the 
activation functions of MLP compute inner products from the input 

examples and the incoming weights; 

• MLP constructs global approximations while RBF construct local a~. 

Time Series Prediction 

A sequence of vectors: {𝑥(𝑡0), 𝑥(𝑡1),⋅⋅⋅, 𝑥(𝑡𝑖−1), 𝑥(𝑡𝑖), 𝑥(𝑡𝑖+1),⋅⋅⋅} 
MLP & RBF networks are static networks 

Dynamic networks: Elman network, RNN, LSTM 

Elman network adopts BP training, the error function 𝐸 = ∑ [𝑦(𝑘) −𝑛
𝑘=1

𝑑(𝑘)]2, where 𝑑(𝑘) is the expected output (target). The network structure 

includes an input layer, a hidden layer (recurrent connections) and an output 

layer. Back propagation through time (BPTT) training.  

In the prediction, the Elman network uses the input data at the current time 

step and the hidden state to predict the output at the current time step.  

RNN: self-connected networks, BPTT learning, suffers from vanishing 

gradient and long memory problems 

LSTM: memory block (cell), non-decaying error backpropagation, solves 

the vanishing gradients and the long memory limitations 

Principal Component Analysis (PCA) 

Eigenvectors and eigenvalues: 𝑆𝑣 = λ𝑣 ⟺ (𝑆 − λ𝐼)𝑣 = 0 

Singular Value Decomposition (SVD): 𝐴 = 𝑈 ∑ 𝑉𝑇 , σ𝑖 = √(λ𝑖) 

Used for dimension reduction, PC may not be interpretable 

Hebbian Learning: Unsupervised, intrinsically unstable 

When a neuron repeatedly excites another neuron, then the threshold of the 
latter neuron is decreased, or the synaptic weight between the neurons is 

increased, in effect increasing the likelihood of the second neuron to excite. 

y = wTx = xTw,    Δ𝑤𝑗𝑖 = η𝑦𝑗𝑥𝑖 ,    𝑦 = |𝑤||𝑥|𝑐𝑜𝑠(α) 

• The simple Hebbian rule causes the weights to increase (or decrease) 

without bounds 

Oja’s Rule (normalized Hebbian rule): involves “forgetting term” 

Normalized to 𝑤𝑗𝑖 (𝑛 + 1) =
𝑤𝑗𝑖(𝑛)+𝜂𝑥𝑖(𝑛)𝑦𝑗(𝑛)

√(∑ [𝑤𝑗𝑖(𝑛)+𝜂𝑥𝑖(𝑛)𝑦𝑗(𝑛)]
2

𝑖 )
 

For η ≪ 1, 𝑤𝑗𝑖(𝑛 + 1) = 𝑤𝑗𝑖(𝑛) + 𝜂𝑦𝑗(𝑛)[𝑥𝑖(𝑛) − 𝑦𝑗(𝑛)𝑤𝑗𝑖(𝑛)] 

In PCA, assume that the first component is already obtained, compute the 

projection of the first eigenvector on the input 𝑦 = 𝑤1
𝑇𝑥 

Then generate the modified input as 𝑥̂ = 𝑥 − 𝑤1 𝑦 = 𝑥 − 𝑤1𝑤1
𝑇𝑥 

Auto-encoders: information compression, dimensionality reduction 

Back-propagation algorithm can be used for unsupervised learning to discover 

significant features that characterise input patterns. This can be achieved by 

learning the identity mapping, passing the data through a bottleneck: auto-

encoders. input-to-hidden: encoder; hidden-to-output: decoder 

Unsupervised Competitive Learning: Winner-takes-all (WTA) 

Simple competitive learning: ℎ𝑗 = ∑ 𝑤𝑗𝑖𝑖 𝑥𝑖 ,  𝑤𝑗∗𝑥 ≥ 𝑤𝑗𝑥 ∀𝑥 

Winner = output node whose incoming weights are the shortest Euclidean 

distance from the input vector 

Update rule for all neurons: Δ𝑤𝑗∗𝑖 = η𝑦𝑗(𝑥𝑖 − 𝑤𝑗∗𝑖),  {
𝑦𝑗∗ = 1

𝑦𝑗 = 0, 𝑖𝑓 𝑗 ≠ 𝑗 ∗
 

Leaky learning: modifying weights of both winning and losing units but at 

different learning rates 𝑤(𝑡 + 1) = 𝑤(𝑡) + η(𝑥 − 𝑤(𝑡)), where η𝑤 ≫ η𝐿  

Maxnet: a specific competitive net that performs WTA competition 
Lateral inhibition  between competitors: output of each node feeds to others 

through inhibitory connections (with negative weights) 

 
• Competition: iterative process until the net stabilizes (at most one node 

with positive activation) 0<ε <1/m, where m is the # of competitors 



• ε too small: takes too long to converge 

• ε too big: may suppress the entire network (no winner) 

Mexican Hat Network: Multiple winners WTA 

For a given node in the output layer, 

Close neighbors: cooperative (mutually excitatory, w > 0) 

Distant neighbors: competitive (mutually inhibitory, w < 0) 

Too far away neighbors: irrelevant (w = 0) 

 

 
Important application of competitive learning 

Vector quantization: categorize a given set of input vectors into M classes 

using competitive learning algorithms, represent any vector just by the class 
into which it falls. 

• Divides entire pattern space into a number of separate subspaces 

• Set of M units represent set of prototype vectors: CODEBOOK 

• New pattern x is assigned to a class based on its closeness to a prototype 

vector using Euclidean distances 
Associative Memories 

An associative memory is a content- addressable structure that maps a set of 

input patterns to a set of output patterns. 

Two types: auto-associative and hetero-associative 

Goal: obtain a set of weights 𝑤𝑖𝑗  from a set of training pattern pairs𝑠: 𝑡, such 

that when s in the input layer, t in the output layer 
Simple AM: single layer, similar to Hebbian in classification 

Algo: For each training samples 𝑠: 𝑡, Δ𝑤𝑖𝑗 = 𝑠𝑖 ⋅ 𝑡𝑗: 

If Δ𝑤𝑖𝑗 = 0 initially, then after updates for all P training patterns 

𝑤𝑖𝑗 = ∑ 𝑠𝑖 (𝑝)𝑡𝑗(𝑝)𝑃
𝑝=1 , 𝑊 = 𝑤𝑖𝑗  → Calculate the outer product 

Example 1: Hetero-associative 

Given: 

Binary pattern pairs 𝑠: 𝑡  with |s|=4 and |t|=2, total weighted input to 

output units: 𝑦𝑖𝑛𝑗
= ∑ 𝑥𝑖𝑤𝑖𝑗𝑖 ,  

activation: 𝑦𝑗 = {
1, 𝑦𝑖𝑛𝑗

> 0

0, 𝑦𝑖𝑛𝑗
≤ 0

,  

weights 𝑊 = ∑ 𝑠𝑖
𝑇(𝑝)𝑡𝑗(𝑝)𝑃

𝑝=1  

Compute: 

𝑆𝑇(1) ⊗ 𝑡(1) = [

1
0
0
0

] [1 0] =  [

1 0
0 0
0 0
0 0

]     𝑆𝑇(2) ⊗ 𝑡(2) = [

1
1
0
0

] [1 0] =  [

1 0
1 0
0 0
0 0

] 

𝑆𝑇(3) ⊗ 𝑡(3) = [

0
0
0
1

] [0 1] =  [

0 0
0 0
0 0
0 1

]     𝑆𝑇(4) ⊗ 𝑡(4) = [

0
0
1
1

] [0 1] =  [

0 0
0 0
0 1
0 1

] 

Compute the weights: 𝑊 = ∑ 𝑠𝑖
𝑇(𝑝)𝑡𝑗(𝑝)𝑃

𝑝=1 , 𝑊 =  [

2 0
1 0
0 1
0 2

] 

 
 Example 2: Auto-associative 

For a single pattern 𝑠 = (1,1,1, −1) in 𝑊 = [

1 1 1 −1
1 1 1 −1
1 1 1 −1

−1 −1 −1 1

] 

training pat.  (111 −1)⋅W = (4 4 4 − 4)→ (111 −1) 

noisy pat. (−111 −1)⋅W = (2 2 2 − 2)→ (111 −1) 

missing info  (001−1)⋅W =(222−2)→(111−1)  

more noisy (−1 −11 −1)⋅W = (0 0 0 0) not recognized 

Replace diagonal elements by zero: (-1 -1 1 -1) wrong 

Hopfield Network 

A fully connected, symmetrically weighted network where each node 

functions act as both input and output node. 

Can be used to restore incomplete or noisy input patterns. 
Randomly select one unit, asynchronous 

𝐻𝑖(𝑡 + 1) = ∑ 𝑤𝑖𝑗
𝑛
𝑗=1,𝑗≠𝑖 𝑣𝑗(𝑡) + 𝐼𝑖  

𝑣𝑖(𝑡 + 1) = 𝑠𝑔𝑛[𝐻𝑖(𝑡 + 1)] = {
1, 𝐻𝑖 (𝑡 + 1) ≥ 0 

−1, 𝐻𝑖(𝑡 + 1) < 0
 

Example 1: Given 4 node network, 2 patterns (1111) (-1-1-1-1), weights 

𝑤𝑙,𝑗 = 1 for 𝑙 ≠ 𝑗, and 𝑤𝑗,𝑗 = 0 for all 𝑗. 

Recover the input pattern: 𝐼 = (𝐼1, 𝐼2, 𝐼3, 𝐼4) = (111 − 1) 

For node 2: 𝑤2,1𝑥1 + 𝑤2,3𝑥3 + 𝑤2,4𝑥4 + 𝐼2 = 2 ≥ 0 => (111 − 1) 

For node 4: 𝑤4,1𝑥1 + 𝑤4,2𝑥2 + 𝑤4,3𝑥3 + 𝐼4 = 2 ≥ 0 => (1111) 

Recover the input pattern: 𝐼 = (𝐼1, 𝐼2, 𝐼3, 𝐼4) = (11 − 1 − 1) 

For node 2: net = 0, no change  (1 1 -1 -1) 

For node 3: net = 0, change state from -1 to 1 (1 1 1 -1) 

For node 4: net = 0, change state from -1 to 1 (1 1 1 1) 

Example 2: Calculate weights matrix 𝑤 = ∑ 𝑥𝑘(𝑥𝑘)𝑇𝑝
𝑘=1 − 𝑝𝐼  

Example 3: Spurious State  

Given 4 node network, 3 patterns (1 1 -1 -1) (1 1 1 1) (-1 -1 1 1) 

• Recover pattern (-1 -1 -1 -1): w = 

If node 4 is randomly selected,  

no change of state for node 4 
Same for all other nodes 

net stabilized at (-1 -1 -1 -1) ➔ spurious state 

• Recover another pattern (-1 -1 -1 0): if the node selection sequence is 

1,2,3,4, the net stabilizes at state (-1 -1 1 1) → correct 

Limitations of Hopfield Network 

The number of patterns that can be stored and accurately recalled is severely 

limited (net may converge to a novel spurious pattern) 

Exemplar pattern will be unstable if it shares many bits in common with 

another exemplar pattern 

Kohonen’s Self-organizing Map (SOM) for dimension reduction 

The idea in an SOM is to transform an input of arbitrary dimension into a 1 

or 2 dimensional discrete map. 

Competition, Cooperation, and Synaptic Adaptation:  

Larger neighborhood: good global ordering and bad local fit  

 
Learning Vector Quantizer (LVQ) 

LVQ is a supervised learning technique that uses class information to move 

the Voronoi vectors slightly, so as to improve the quality of the classifier 
decision regions. 

1. Randomly select an input vector x 

2. If the winner belongs to the right class, 𝑤𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑 + 𝜂(𝑥 − 𝑤) 

3. If the winner belongs to the wrong class, 𝑤𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑 − 𝜂(𝑥 − 𝑤) 

MATLAB Code 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

% Create a Self-Organizing Map 

dimension1 = 10; 

dimension2 = 10; 

net = selforgmap([dimension1  

dimension2]); 

% Train the Network 
[net,tr] = train(net,x); 

% Test the Network 

y = net(x); 

% View the Network 

view(net) 

% Plot 

figure, plotsomtop(net) 

%1D and 2D Self Organized Map 

%Define 4 clusters of input data 

close all; clear all; clc; format compact 

% number of samples of each cluster 

K = 200; 

% offset of classes 

q = 1.1; 

% define 4 clusters of input data 

P = [rand(1,K)-q rand(1,K)+q 

rand(1,K)+q rand(1,K)-q; 
rand(1,K)+q rand(1,K)+q rand(1,K)-q 

rand(1,K)-q]; 

% plot clusters 

plot(P(1,:),P(2,:),'g.') 

hold on 

grid on 

 
 

%Create and train 1D-SOM 

% SOM parameters 

dimensions = [100]; 

coverSteps = 100; 

initNeighbor = 10; 

topologyFcn = 'gridtop'; 
distanceFcn = 'linkdist'; 

% define net 

net1 = 

selforgmap(dimensions,coverSteps, 

initNeighbor,topologyFcn,distanceFcn); 

% train 

[net1,Y] = train(net1,P); 

% plot 1D-SOM results 

% plot input data and SOM weight 

positions 
plotsompos(net1,P); 

grid on 

 

%Create and train 2D-SOM 

% SOM parameters 

dimensions = [10 10]; 

coverSteps = 100; 

initNeighbor = 4; 

topologyFcn = 'hextop'; 
distanceFcn = 'linkdist'; 

% define net 

net2 = 

selforgmap(dimensions,coverSte

ps,initNeighbor,topologyFcn,dist

anceFcn); 

% train 

[net2,Y] = train(net2,P); 

%plot 2D-SOM results 

% plot input data and SOM 
weight positions 

plotsompos(net2,P); 

grid on 

% plot SOM neighbor distances 

plotsomnd(net2) 

% plot for each SOM neuron the 

number of input vectors that it 

classifies 

figure 

plotsomhits(net2,P) 
 

 
% Define the training inputs and 

targets 

p = [0 0 1 1; 0 1 0 1]; 

t = [0 0 0 1]; 
% Create the backpropagation 

network 

net = newff(minmax(p), [4 1], 

{‘logsig’, ‘logsig’}, ‘traingdx’); 

% Train the bp network 

net.trainParam.epochs = 500; % 

training stops if epochs reached 

net.trainParam.show = 1; % plot 

the performance function at 

every epoch 
net = train(net, p, t); 

% Testing the performance of the 

trained backpropagation network 

a = sim(net, p) 

>> a = 0.0002 0.0011 0.0001 

0.9985 

>> t = 0 0 0 1 

 

% Load the data points into 

Workspace... 
% Assign training inputs and targets 

P = Points; % inputs 

T = Group; % targets 

% Construct a two-input, single-output 

perceptron  

net = newp (minmax (P), 1); 

% Train the perceptron network with 

training inputs (p) and targets (t) 

net = train (net, P, T); 

% Simulate the perceptron network 
with same inputs again 

a = sim (net, P); 

% Querying the perceptron with inputs 

it never seen before P9 = [-2; -3]; 

P10 = [0.5; 4]; 

a_P9 = sim (net, P9) 

a_P10 = sim (net, P10); 

 % Initialize a multi-layer network  with 

4 hidden, 2 output units and sigmoid 

activation functions. 

net = newff (minmax (p), [4, 2], 

{'tansig', 'logsig'}); 

 


